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Pruess [12,14] has shown that exponential splines can produce co-convex and
co-monotone interpolants. These results justify the further study of the mathemati
cal properties of exponential splines as they pertain to their utility as numerical
approximations. They also warrant the generalization of the exponentm! spline in
fruitful directions. Herein, we present convergence rates and extremal properties for
exponential spline approximation, cardinal spline and B-spli:ie bases for the space
of exponential splines, and generalizations to higher order tension splines and
Hermite tension interpoiants. ~. 1991 Academic Press. 'oc.

1. Il'TRODL'CTIO:-;

In this paper, we discuss exponential splines from a theoretical vIew
point. The importance of such an investigation is underscored by Pruess'
results [12, 14] asserting that exponential splines can produce co-convex
and co-monotone interpolants. The utility of such approximants for the
applications is quite clear.

Starting from the analogy of a cubic spline to a beam, we add a tension
term to the governing differential equation thus giving rise to the exponen
tial spline. The solution to this boundary value problem expresses the
exponential spline in terms of its second derivative at the knots. However.
there is an alternative representation of the exponential spline in terms 0:
its first derivative at the knots. For future reference as well as completeness,
we next derive this other system of equations. Pruess' results on the shape
preservation capabilities of exponential splines are then reviewed since they
provide the raison d'etre for what follows.

Convergence of the approximating spline is next studied through the
proximity of the interpolating cubic and exponential splines with identical
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end conditions. We then introduce two bases for the space of exponential
splines, namely the cardinal spline basis and the B-spline basis. A discus
sion of the appropriateness of each of these representations is included.

The exponential spline is next inspected in the context of generalized
splines. As a consequence of this perspective, we obtain certain extremal
properties for exponential splines in two naturally arising pseudonorms.
We show how to combine these results to produce extremal properties in
a third pseudonorm. Finally, we are led to consider higher order tension
splines and higher degree interpolation by piecewise exponentials.

2. NOTATIOi'l

For ease of reference, we here collect the principal notation used in this
paper:

h= max hi'
l:S::;i.:s;.\'

P= max Pi'
l~i~S

s = sinh(ph), c = cosh(ph)

b l =12 ;111 - f'(a),

mo= f'(a), mV+ 1= f'(b)

c;=cosh(p;h;) U= I, ..., N)

[
I piJ! 2 (. I H)ei = -h-- IPi 1= ,oo.,lV.

i Si!

3. EXPOi'lENTIAL SPLINE EQUATIO)lS

The cubic spline is well known to have the following analogue in beam
theory [I]. Consider a simply supported beam with supports
{(xi,fJ };V~iI. Then s(x), the deflection of the beam, is a solution to the
differential equation [E· I· D2

] S = M between successive supports. Here
E = Young's modulus, I = cross-sectional moment of inertia, M = bending
moment. Under the assumption of weightlessness, M is a piecewise-linear
continuous function with break points at the supports. Differentiating the



THEORY OF EXPO:-iEKTIAL SPU",ES 3

above twice, we arrive at the two-point boundary value problem on
[Xi' X;~I] (i= 1, ..., N)

s(x;) = fi' s(x;_ Jl =.f.+ I' s"(x i ) = s;', S"(Xi~ I) = S;'~ 1-

(3. I)

where s7 and S;'+I are chosen to ensure sEC 2 [a,b] when s'(a) and :/(b)
are given. Note that [D 4 ]s = 0 on [Xi- Xi-I] implies that s is a cubic there.

The cubic spline so defined has a tendency to exhibit unwanted undula
tions. The above analogy suggests that the application of uniform teusio!l
between supports might remedy the problem [18]. The beam equation on
[x i, Xi + I] then becomes [E· I· D2

- tJJ s = Af. In the follm"liing
paragraphs, s(x) will denote the cubic spline and ,(x) the exponential
spline.

Letting P7 = tiiE· I, the above considerations lead us to define the
exponential spline [19, 20] as the solution to the boundary value problem
on [Xi' Xi_I] U= 1, ..., N)

(3.2)
r"(Xi)=r;'~ r"(xi+l}=r;',...l~

with r;' (i = 1, ..., LV + 1) as yet undetermined. Let us pause to I'.ote that

pi-+O=[D4],=0 (cubic spline) while Pi-+Cf::=[D2],=O (linear
spline j.

The solution to this boundary value problem is

r "J - - i ,. i v - v'i X i + 1 .X,' j, 'i+l I" "i+ F __ . .......1 -- .--
J i 2 hi! i+ ~ ~ 2 1"_ Pi i L Pi -.J ft i

= A, + Bix + C,e f '< + Die-p,.,. (3.4 )

The requirement of first derivative continuity at the points of interpola
tion yields expressions for the determination of ,;' (i = 1, ..., X + 1). Specifi
cally, ,;' (i = 1, ..., LV + 1) are the solution to the system of equations

(i=2, ... , X) (2-.5 )
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where the first and the last equations represent specified slope end condi
tions, r'(a)=f'(a), r'(b)=f'(b). If either r;' or r;~+j is specified, it is
simply eliminated from (3.5). r(x) is uniquely defined once r;'
(i = 1, ..., N + 1) are determined.

As an alternative to the above formulation of the exponential spline in
terms of second derivatives, we have the following formulation in terms of
first derivatives. In this case, on [Xi'Xi + j ] the exponential spline is the
solution to the boundary value problem

[D4 -p;D2 ]r=O, r(xi)=!i' r(xi+d=!i+j, r'(x;)=r;, r'(xi+d=<+j·

(3.6)

The general solution of (3.6) is

r(x) = a+ bx + ceP.(X,+I-X) + deP,(x-x,J.

Differentiating (3.7), we obtain

(3.7)

(3.8)

The determination of a, b, c, d then consists of enforcing the above bound
ary conditions, (3.7).

This results in

. [Sinh Pi(X - Xi) - sinh p;(xi+ j - x) Xi+ 1 - 2x + Xi]
2 + 2

PiSi pill;

, {_d_i_. [Sinh Pi(Xi+ 1- X) _ Xi+ 1- X]+ r l , 7 7 -"--'-::,'---

ei-di PiSi Pilli

__e_i _.[Sinh Pi(X-X;) _X-Xi]}
e;-d; P;Si p;ll i

, {__ei_. [Sinh Pi(Xi~ 1 -X)
+ri+l 2 d2 2ei - i PiS;

__d_i _. [Sinh PiC' - Xi) _ X - Xi]}
e;-d; P;Si p;ll i

(i= 1, ..., N). (3.9)

Specifying r;' = r (a) and <~+ 1 = r (b ), r; (i = 1, ..., N + 1) are the
solution to the tridiagonal system



THEORY OF EXPO)JEKTIAL SPLI~ES

[
ei_1 J' r di_ 1 _d_i 'I' , I_e_i ] T' .

d 2 _ 2 'i-I +Ld2 _ 2 +d2_ 2 ,,+: d2- 2 -j-c

i-I ei_ 1 i-I ei_ 1 i eiJ L i ei

5

(3.10 )

which is an expression of the C 2-smoothness requirement. If either < or
<hI is specified, it is simply eliminated from (3.!O).

4. SHAPE PRESERVATION A~'D CONVERGENCE

We now review the results of Pruess [12, 14] concerning the behavior of
exponential splines in the limit of infinite tension. Of primary interest are
the shape preservation properties of exponential spline interpolation. We
next establish rates of convergence for the exponential spline in the limit of
vanishing mesh width. Convergence rates for higher derivatives are also
given for functions possessing an appropriate degree of smoothness.

Let I_(.X') denote the linear spline of interpolation. Then we have

THEOREM 4.1. Giren a sequence of exponential splines such that Pi -? X

for some i, then r"(x) ~ 0 and ,'(x) --+ I_'(X) uniformly in any closed subinter
wI o.f (Xi' Xi+tl, while ,(x) ~ ;.(x) uniformly in [Xi' Xi+ I]'

This theorem gives us hope that we can produce co-convex and
co-monotone interpolants using exponential splines with sufficiently high
tension. The fulfillment of this expectation is the subject of

THEOREM 4.2. lfbi, bi+1 are positive (negatire), then, for P,-I, Pi' Pi+:
sufficiently large, r"(x) is positire (negative) in [Xi' x i+ J. If i.'(x) is positive
(negative) in (Xi_I> Xi+2 ), then, for Pi-I' Pi' Pi+ i sufficiently large, ,'(x) is
positive (negative) in [Xi' x i+l ].

The cubic spline many times exhibits unwanted oscillations in the foY:'ffi
of overshoots and/or extraneous inflection points. The above results assure
us that the exponential spline can remedy this situation for appropriately
chosen tension parameters. See McCartin [8] for details.
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We now establish rates of convergence for the exponential spline in the
limit of vanishing mesh width. Convergence rates for higher derivatives are
also provided for functions possessing the required degree of smoothness.

We begin by studying the proximity of cubic and exponential splines
with identical end conditions. The following result has been established by
Pruess [12].

THEORHI 4.3.

IIDi(s - r )11 x ~ (26/3) p 2h4
- i max Is;' I

j
(i = 0, 1,2). (4.1 )

Here, as before, sand r are the cubic and exponential splines, respec
tively. We next present a companion result.

THEOREM 4.4.

IDi(s - r )11 x ~ (26/3) p 2h4
- i max Irj'l

j .
(i=o, 1,2). (4.2)

Proof Similar to that of Theorem 4.3 (see [7]). I

These theorems may be used to obtain results for IIDi(f - r)11 x from
known bounds for IIDi(f -s)llx.' For example,

COROLLARY 4.1. If f(x) E C 4 [a, b] then there exists a constant, k, inde
pendent of h such that IIDi(f - r)11 ~ kh 4

-
i (i = 0, 1,2).

We now take up the convergence of the third derivative. Defining
15 = s - rand Ll = [15;', ..., J;~+ IY, we have on [x;, X i + I]

_", 15;'+ 1 - 15;' " [ 1 Pi ]
i) (x)= h +r i + 1 h.-~coshPi(x-xJ, , ,

+r;' [~il +~COShPiC\:i+I-X)} (4.3)

where we have used the identity that s"'(X) = (s;'+I-s;')jh i on [Xi,Xi+ l ].

The fact that the bracketed expressions in (4.3) are monotonic on
[Xi' Xi~I]' combined with the inequality

1 P 1 [p.c. 1]
o~-_-.:~- -'-'-- =>

hi Si 2 Si hi

W"(x)1 ~-h2 ;ILlL + [PiCi __,IJ .~max Ir;'I.
I S, 1, _ I

(4.4 )

(4.5 )
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However,

Therefore, (4.5) yields

5) h 2 1
I>: H' ( ) I -? '" ~ 21 I H ,
U x ::;;-3r-

h
. max Ir i ! +) P fl j maXT j !

1 I - !

107 zh 'H' h::;;6 P maxlr;I'~'
mm

(4.6)

(4.7)

(i, j = 1, ... , LV + 1)

where hmin = mini h"
Known results for the cubic spline (see, e.g., [4, Theorem 2J) now

establish the O(h) convergence of the third derivative. Specifically,

THEOREM 4.5. If fix) E C 4 [a, bJ then there exists a constant, k, inde
pendent of h but dependent on h/h min such that !!D 3(f - r)'; ::;; kh.

Proof

jD\r - r)1 x::;; ID3(f - s)L: + I~D3(S - rll :xc

4 107 2 h , " ,::;;IID11Ix·kj·h+-p ·-/-·maxlril·h=gh. (4.8}
6 ,zmic l

where k 1 and hence k depend on h/hmin · I

COROLLARY 4.2. If p and hihmin are bounded as h --+ 0 then
IID3(f - r)11 x = O(h).

5. EXPO:-lEXTlAL SPUKE BASES

Both theoretical and practical aspects of exponential splines are greatly
illuminated by representation in terms of simple basis splines. In the
following paragraphs, two of the most useful bases, the cardinal splines
and the B-splines, are introduced and studied for the case of uniform mes!1
and tension.

The cardinal spline basis {C;(x) L\~+02 is uniquely defined by the follow
ing conditions [3,4, 11, 15].

C~(xd= 1. CO(.'j) =0, C~(x\-d=OI

C;(xd=O, C;(xj)=bij' C;(xs+d=Or

C\_z(xd=O, Cy+z(Xj ) =0, C'",.q(xYLtl= 1)
(5.1.!
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S+I

r(x)=f'I·CO(.X-)+ L f;·C;(x)+J:"-+I·C X +2(x). (5.2)
;~I

The principal structural properties of the cardinal basis splines are next
derived. We begin by generalizing the arguments of Birkhoff and de Boor
[4]. Let t(x) be the function on [x I' x,\- + I] of the form

satisfying

t(x) = a + bx + ce PX + de- Px

t(xd=f(xd, t(x.'V+I)=f(xN+tl,

t'(x I) = f'(x I), t'(x" + I) = f'(x v -I)'

(5.3 )

(5.4 )

Given the exponential spline fit to g(x) = f(x) - t(x) with zero slope end
conditions, we can simply add t(x) to it to obtain the fit for f(x). Hence,
without loss of generality, we consider only functions f(x) such that
f(x l ) =f(xN-,-tl =f'(x l ) =f'(x,v+tl =0. Thus, we need only consider

_v
r(x) = L f;· C;(x).

;=2

(5.5)

The following results can be established by arguments nearly identical to
those in [4]. Consequently, their proofs are either omitted or abbreviated.
Full details are available in [7].

LBfMA 5.1. Any function of the form e(x) = a + bx + ce PX + de - px which
satisfies e(O) = 0 and e(h) = 0 also satisfies

Proof

[

PhC - s 2(1- c) + PhS]

[
e'(h)]= ph-s p(ph-s) [e'(O)]
e"(h) p 2hs phc-s e"(O) .

ph-s (ph-s)

(5.6)

( ) __ e~ . [e~(1- c) - e~(Ps)] . h
e x - 2 + X (h) + Sill px

P P P -s

[eo(C-I)+eo(p2h )] h [eo] (5.7)
. 2( h) + cos px· -:;- ,

p p -s r

where e~=e'(O) and e~=e"(O). I
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COROLLARY 5.1. For i of- j + 1, j, Ct(x) satisfies

9

I
PhC - s 2( 1- c) + phsl

rC;(Xi+tl]= ph-s p(ph-s) r C;(.\)1 (5.8)
LC;'(xj + l ) p 2hs phc-s LC:'Cx)J

Lph - s (ph - s) J
COROLLARY 5.2. For i = 2, ... , N, Ct(x) sati~fies

j<i

C;(XJc;'C.)~O, »i.
COROLLARY 5.3. For i = 2, ... , N, C(x) satisfies

(5.9 )

IC;C\)i <~IC:(xj_tll,

IC;(xj + til < ~IC;(x)l,

J<i-1

j> i.
(S.le)

LEMMA 5.2. Let r(x) be an}' exponential spline !1'ith knOTs {xJ;'~+:

(uniform mesh and tension) Irhich satisfies

Then

LEMMA 5.3. Let rex) be such that

Then

r t _ 1 = r t = r I ~ 1 = 0,

r(x)~O, XE[Xt_1,XJ.

(5.13 )

(5.lL )

COROLLARY 5.4. For i = 2, ..., N, Ct(x) satisfies

ICt(x)1 ~ 1C;(xj)1 . h,

ICt(x)1 ~ IC;(.•j)! ·h,

XE[xi,XJ_J,j>i

x E [x) _ I. x;J, j < i - 1.
(5.15 )

Note that these results imply an exponential decay of ICt(x)1 away from Xt.
We next consider the "natural cardinal splines defined by the conditior.s

N;'(x l )= N;'(xy+tl =0, (i,j= 1. ... , N+ 1), (5.l6)
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which form a basis for the "natural" splines reX) satisfying r"(x l ) =
r"(xv+ d = O. Let H(x) be any exponential spline with H~ = N:~.+ 1= O. The
remaining {NI'} ~ 2 are determined from

0 V" b2/ea 1 2

1 0 V" b3 /ea i 3

(5.17)

0 a N:~. -I bY-lie
0 1 H" bN/ea .v

or AN" = 6, where a = 2d/e, which is obtained from (3.5) with modified end
conditions and uniformity over the intervals. Now, A can be factored as
A = LU, where

[

P2 .
1 .

L= ..

o

~] [~ ~~I •...•. ~]
~ ; U= ~ '. ~I
. . . P,v-I

PN 0 1

(5.18 )

with P2 = a, Pi = a - Pi--\ : (i = 3, ..., 1'1). It follows that

2d a+ /a 2 -4\i

= ~+J(~2

- 1~ 2 +fl·

Thus, det A = Di Pi> 0 since each Pi> O. Hence, we conclude that A is
nonsingular and that these "natural" cardinal splines are well-defined.

In particular, letting H(x) = 1'1j(x) we have (after some lengthy computa
tions) the following recurrence relations:

N/'= -Pi-IN;'+I

N/'= -P;::;~I_iN;'_1

Nj'_I=pi-_\[(he)-I-Nj'J I
Nj'+ I = p,v~J(he)-I-1'1n

[
2 + -I + -I ]N."= -(he)-I Pi-I PN-j

J 4 -I -I-Pj-I-PN-j

We then have the following.

i=2, ..., j-2

i=j+2, ..., 1'1

j #- 1, 2, 1'1, 1'1+ 1.

(5.19 )
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LEM.\1A 5.4. For R(x)=Nj(x) (j= 3, ..., S -1) and either XE [Xi' Xi~;]'

j+ 1~i~1\T or XE [Xi_I, x;], 2~i~j-l, we haDe

IV()I [1 l' .'~31 h2 ; V"!lV X, ~ - ; .../ ~', '!lVi" (5.20)

Proof We consider the case XE[Xi_I,XiJ, 2~i~j-l_ Then :V;'_;=
- Pi--\ IV-i' and, from (3.3),

T _ N;'{[SinhP(X-Xi_d
N(X)=-2 ' h h

P SIll P

, sinh p(x,-x)l-. . . 'I
Pi - I sinh ph J

_[X-~'i-I_Pi-_\ .XI~"]}

=> IN(x)1 ~ [1-1,1",/'3] .Jz2. is;'!. (5.21)

Similar considerations apply to the case x E [Xi' Xi + 1], j + 1~ i ~ N. I

COROLLARY 5.5. For the above considered case we hare

- 2h ,- ,-
I"V(x)1 ~"3'; ('vI 3 - 1)(2 - 'vi 3)1-',

with a similar result for the other case.

Proof The recurrence relations for {R;}L: =>

(5.22 )

{5.23 )

Substitution into (5.21) yields (5.22). Thus we also have exponential decay
of these "'natural" cardinal basis splines. I

The cardinal spline formulation is not overly useful for calculations
because of the global nature of the basis functions. However, it does
provide great insight into many numerical aspects of splines. For example,
the above considerations allow us to determine the effect of a change in
some data value, sayfi~fi+Gi' We simply add the term Gi'C,(X) to the
existing cardinal spline expansion. Similarly, a study of Co(x) and Cs~Ax)

allows one to discuss the global effect of end conditions.
Next, we introduce another basis for the space of exponential splines.

This basis will be constructed so as to have minimal support [2.5,11, 13J.
We begin with the following
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(5.24 )

THEOREM 5.1. Any exponential spline, B(x), with a support offewer than
four intervals is identically zero (assuming there are at least five knots).

Proof Similar to that for cubic splines [7]. I
We now proceed to construct such a "B-spline" with a support of four

intervals. Given {xo+ih};=_2 we require that

B(xo - 2h) = B'(xo - 2h) = B"(xo - 2h) = B(xo+ 2h)

= B'(xo+ 2h) = B"(xo+ 2h) = O.

Also, we normalize so that B(xo) = 1. By symmetry, we set B'(xo) = O. This
allows us to solve for B(x) on [xo, x o+2h] and then reflect the result
about the line x = Xo' Applying the end conditions and continuity condi
tions we arrive at

where

p phc
b2 = . a l =---.

2(phc - s)' phc - s'

b
_E [ c(c-1)+s2 J _~[e-plz(l-c)+s(e-plz-1)J

1- . • c l - .
2 (phc - s)( 1- c) . 4 (phc - s)( 1- c) .

_ ~ [e
plz

(c - 1) + s(e
PIz

- 1)J
d l - 4 (phc-s)(l-c)' (5.28)

Next add the points X_2' X_I' XO, XN +2' X,V+3' X.\'+4 to the set of knots
in the obvious fashion. Denote by Bi(x) the B-spline centered at Xi
(i = 0, ... , N + 2). All the B i so defined are simply translates of this canonical
B-spline. A straightforward computation confirms that indeed {Bi(x) };\'~+02

forms a basis on this mesh with tension p.
Let !(x) = L;\'=+02 aiBi(x). The linear systems which follow represent

interpolation at the nodes of the B-splines defined above.
Consider the case of slope end conditions. Using (5.25) and (5.26) to

interpolate to [1'1' fl' ..., fv + I' J:\' -'- I] yields



THEORY OF EXPOXENTIAL SPLI:"ES

rp(l-c)

2(phc - s)- .

s- ph

2(phc-s)

o

o
L

o

s-ph

2(phc-s)

p(1-c)

2(phc - s)

fY+l

1'\"+1

.o(c- i)

2(phc-5)

5- ph

2(.ohc-s)

o

:3

0 1
0 I,

I
!

s- ph I

2(.ol1c-5)

p(e - 1)

2(phc - s) J

(5.29 )

This system is irreducibly diagonally dominant and hence nonsingular ;;0

that r(x) is uniquely expressible in this form. Note that we can reduce this
system to tridiagonal form by eliminating ao and a\" + 2' Simply multiply
the first equation by (s- ph)/p(c-l) and add it to the second equation
and multiply the last equation by (s - ph )ip( 1- c) and add it to the equa
tion above it.

Consider the case of second derivative end conditions. Using (5.25) and
(5.27) to interpolate to [/;''/1' """, fv~ 1, f'~.+ I] yields

p2S
0

.,
-p-s p-s

0
I

2(.ohc - s) phc-s 2(.ohc-5) I
s- ph s- ph I

0 I
2(phc - s) 2(phc - s) I

s- ph s- ph !
0

2(phc-s) 2(phc - s) I
p2S

_p2S
0 I

I 0
p-s I

2(phc-s) phc-s 2(.ohc-s)j...

Jao I;'
a1 11

(5.30 )law fV+l

a V + 2 f~~·+ I
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Note that we can also reduce this system to tridiagonal form by eliminating
ao and a N +2' Simply multiply the first equation by (ph-S)/p2S and add it
to the second equation and multiply the last equation by (ph - S)/p2S and
add it to the equation above it. The resulting system is strictly diagonally
dominant and hence nonsingular so that ,(x) is once again seen to be
uniquely expressible in this form.

Note that no more than four basis functions contribute to the value of
,(x) at any point.

In addition to the value of the B-spline representation as a theoretical
tool and a computational device, it is also of considerable utility in com
puter aided design. This utility stems from the local nature of this basis.
A spline created as a linear combination of B-splines can be displayed
with the user then being able to alter the coefficients of the expansion. As
each change affects only four intervals, the user can experiment and design
a pleasing curve.

There is an even more subtle aspect of such interactive design. Recall
that, from (5.25) and (5.28),

Thus if we consider the local perturbation

s-ph
'k +- 'k + 15, 'k-l +- 'k-l + 2(phc _ s) 15,

j=k-2, k, k+ 1. (5.31)

s- vh _
'k+l+-'k-rl+2 h- )6(p c-s

(5.32 )

then this simply amounts to redefining ak +- ak + 15. Hence, groups of points
may be moved without requiring the solution of the spline matrix equation.

6. PIECEW1SE-GD1ERALIZED SPLI"SES

Certain important properties of exponential splines are most readily
obtained by appealing to a more general framework. Consequently, we
next introduce the concept of piecewise-generalized splines thereby arriving
at certain extremal properties of the exponential spline.

The symmetric factorization of the exponential spline operator as

(6.1 )

permits an interpretation in a generalized spline context [1, 6, 10, 11, 16,
17, 21]. In general, let L be a linear differential operator of order m
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(6.2)

with Pk(X) E Cm[a, b] (k = 0, ... , m). Let L* be the formal adjoint of L:

L*=(-l)'" D m(po)+(-l)m- 1 D m- 1(pd+ ... -D(Pm-l)+p,J

(6.3 )

An interpolatory generalized spline, s, associated with L is defined by the
conditions SEC Zm - 2 [a,b]; sEKzm(Xi,Xi+l), where it satisfies L*L5=0
(i = 1, ... , N), and s(x;) = fi (i = 1, ..., N + 1). We employ the notation Kz", to
denote the class of functions with absolutely continuous (2m - 1jih
derivatives and a square integrable (2m)th derivatives. Note that
generalized splines as defined are a special case of L-splines [16 J.

We may instead insist that S satisfy LiLis=O on (Xi,X ir1 ). In such a
case, S is called a piecewise-generalized spline which is a special case of
piecewise L-splines [10]. If we let Li=Dz-PiD then we recover the
exponential spline.

The principal advantage of this framework is that the functional
L;\~ 1 f~:+ I (LJ)Z dx is minimized by the piecewise-generalized sp1i:1.e
fulfilli~g the end conditions (L 1 r)(k-l)=O (k=l, ... ,m-l) at Xl and
(Lvr )(k -1) = 0 (k = 1, ..., m - 1) at X,q l'

Results in the literature on piecewise L-splines [10] provide certain
extremal properties associated with either of the functionals
J~ Uff ± pf')Z dx. We next derive a third functional, J~ [(1ff)Z + p Z(j')2J dx,
and establish its associated extremal properties.

We begin with the following

LEMMA 6.~ .

• /3
I f ( " + ') I" - , )) d " , , , I /3
I • r u _ pu - u, v· + pv j x = t II V - Ul: ::t: pu~' )' , , .

• x
(6,4)

Proof Integrate by parts twice. I
Next, let fE Kz[a, b] and p(x) be a step function with p(x) = Pi on

(Xi' X i + J (i = 1, ..., N). We then have the identity

.. b

I (I" ± pf')Z dx
"<1

,b ,b

=1 [1"-r"±p(j'-r,)]zdx+1 (r"±pr')2dx
~u ~a

64066 I·e

eb

+ 2 I Uff - rff ± p(f' - r')] . (r ff ± pr') ds.
"a

(6.S)
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By letting u = f - r and v = r" ± pr' in Lemma 6.1, we arrive at

vI f"'+l {(r"±pr')[j"-r"±p(f'-r')]
i= 1 x!

- (f - r)[ rUt·) ± pr"+ p(r'" ± pr")]} dx

IV

= L {(f'-r')(r"±pr')-(f-r)
i~l

x (r'" ± pr") ± p(f- r)(r" ± pr')}~:-l. (6.6)

Ifr(x) interpolates tof(x) at {Xi};~-'/ then (6.6) reduces to

~V "X,_l

L J (r"±pr')[I"-r"±p(f'-r')]dx
i= 1 x!

IV

= L {(f'-r')(r"±pr')};;~l

i=l

= [f'(b)-r'(b)]· [r"(b)±pr'(b)]

- [f'(a) - r'(a)] . [r"(a) ± pr'(a)]. (6.7)

Applying this to the last term of (6.5), we obtain

rb

(I" ± pf')2 dx
'a

.b rb
= j [I" - r" ± p(f' - r')]2 dx + (r" ± pr')2 dx

a ·a

+ 2{[f'(b) - r'(b)] . [r"(b) ± pr'(b)]

- [f'(a) - r'(a)] . [r"(a) ± pr'(a)]}.

Adding together the two relations embodied in (6.8) leads to

THEORHI 6.1 (Extended Holladay's Theorem).

r
b

[(1")2 + p2(f')2] dx
·a

(6.8)

=r[(I" - r")2 + p2(f' - ,')2] dx +r[(r")2 + p2( r')2] dx

+2{[f'(b)-r'(b)] ·r"(b)- [f'(a)-r'(a)] ·r"(a)}. (6.9)
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This leads us to define the inner product [9J

.b

<I g)e=' I"(x) g"(x) + p2(X).f'(X) g'(x}dx
'a

together with the induced pseudonorm

( ,.b '" 1 2

IIflle = {t [(I"(x»2 + p2(X)(f'(X»)2] dX} .

The extended Holladay's theorem (6.9) may then be restated as

II iii; = If - r Ii; + Ir:1; + 2{[f' (b) - r (b)]

·r"(b)- [f'(a)-r'(a)] .r"(al}.

(6.1 0)

(6.11 )

(6.12)

If either r"(a}=r"(b)=O, or r'(a)=f'(a}, r'(b)=I'(b) then we conclude
that lin; = IJ - r II; + Ii r Ii; thus implying the important

THEOREM 6.2 (Minimum Norm Property). Giz.:en fIx) E K 2 [a, 0], of all
g(x)EK2 [a,b] satisfring either g"(a)=g"(b)=O or g'(a)=f'(a),
g'(b)=j'(b) and interpolating to fix) at {Xi};~~+!!' the one with minimum
pseudonorm is the interpolator).! exponential spline, r(x).

Moreover, we obtain the equally important

THEOREM 6.3 (Best Approximation Property). Let fix) E K 2 [a, b], r(xl
be the interpolatory exponential spline satisfying r'(a)=j'(a), r'(b)=j'(b),
and fix) be any other exponential spline with the same mesh and tension.
Then, ilf - Til e?': ilf - r I; eo That is to say, r(x) is the best approximation by
exponential splines.

Proof. Let g = f - f and f = r - f. Hence, f is an exponential spline
satisfying fix;) = g(x;}, f'(a} = g'(a), and f'(b} = g'(b). By Theorem 6.1, we
have

7. EXPONE~TIAL HERMITE INTERPOLA~TS

Spline interpolation by its very nature is a global scheme as it entails the
solution of a tridiagonal system. On the other hand, osculatory (Hermite)
interpolation provides a local means of interpolation. For this reason,
Hermite interpolation is many times preferred over spline interpolation.

Hermite interpolation requires the specification of a certain number of
consecutive derivatives at each knot. The particular number may vary from
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knot to knot. The local nature of this approximation comes to us at the
expense of smoothness. For example, if in the polynomial case we also
specify first derivatives we have a cubic Hermite interpolant which is only
C I as opposed to the C 2 smoothness provided by the cubic spline.
Moreover, the required derivatives are typically not available and must
themselves be approximated.

With these provisos duly noted, we now proceed to discuss Hermite
interpolation by piecewise exponentials. For ease of presentation, we
restrict x E [0, 1] with 1(0) = 10,/(1) = 1,,1'(0) = I~, f'( 1) = I~ given. In
this setting, exponential Hermite interpolation is effected by

where ~o, ~l' (fio, (fi, are the cardinal functions defined by

~0(.Y;) = ao+ box + coePx + doe- P\

~1(X) = a l + b,x + c, ePX + d l e- P\

(fio(.Y;) = iio+ box + coePx + (Joe - pX;

(fi1(X) = iiI +b,x + cI ePX + (JI e- Px;

This leads to

~0(0)= 1, ~0(l)=~~(0)=~~(1)=0

~,(1)= 1, ~1(0)=~~(0)=~~(1)=0

(fi~(0) = 1, (fio(O) = (fio(1) = (fi~(I) = 0

(fi~(1)= 1, (fi,(O)=(fi,(I)=qJ~(O)=O.

(7.2)

1
~0(.Y;) = !!fl {2( 1 - cosh p + p sinh p) + (- 2p sinh p) x

+ (1- e- P) ePX + (1 - eP) e- PX }

1 .
~,(x)= D {2(I-coshp)+(2psmhp)x

- (1 - e - P) ePx - (1 - eP) e - px }

_ -1
~0(.Y;) = - 2(sinh p - p cosh p) - 2p(l- cosh p)x

p9

- (1 - e - P- pe - P) ePX + (1 - eP+ peP) e - px }

_ 1
~1(X) = - {2(sinh p - p) + 2p(1- cosh p)x

pfl

+ (- 1+ P + e - P) ePX + (1 + P - eP) e - px }, (7.3 )

where f0 = 4 - 4 cosh p + 2p sinh p. Note that

(7.4 )
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and that all four basis functions involve ePX and e - px. The computational
complexity may be reduced by the following construction.

Let

where

!/Jl(x)=l-x

lPl(X) =X= !/Jdl-x)

('i ,,\
, J ..... j

(7.6 )

!/Jl(X) = az + blx + CleP';

!/J3(X) = G3+ b3x + c3e- P';

and sf, ZB are as yet undetermined.
This produces

!/Jl(O) =0, i/1l(l) =0, !/J;(0)='l.

!/J 3(0) = 0, Ij;3(1) = 0, !/J~(O) = i3

- 1+ (1 - eP ) x + ePX

!/J?(x) = ':J. •---'----'----
- . l+p-eP

-1 +(1-e- P ) x+e- P<

lj;3(X)=f3' 1 -p-p-e

Letting q = (1- eP+ peP), (1 + p - eP) we have

(7.7)

(7,8 )

Now, lolj; 1 +11 i/f 1 has a slope of m = fl - 10' Hence, we require that

[slJ= [1 ~q
ZB -q

1+q

-q]
1-q r~~-ml.

1 LJ [-mJ

1+q

(7.9)

(7.10)

Equally as simple would be to let lj;;(O) = lj;;( 1) = 1, in which case

[

1 -q 1

[sI] = 1 - q2 1 - qZ IrI; - mJ,
J,n 1 II '"
;Xl -q lu[-m

-- --I
1- q2 1- q2J

(7.ll)

Equally important as the result is the technique. Specifically, suppose
that we are provided with two new functions e fJX and e -fJX. Together with
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1, x, ePX, e- Px, we are now required to matchf,f',f" at x=O, 1. The car
dinal spline approach would entail constructing the six new basis functions
rPo, rPI' fo, fl' ~o, ~I defined by

rPo(O) = 1, rPo(1) = rP~(O) = rP~(l) = rP~(O) = rP~(1) = 0

rPI(X) = rPo(1- x)

f~(O)= 1, fo(O)=fo(1)=f~(l)=f~(O)=fo(1)=O (7.12)

fl(X) = -fo(1- x)

~o(x)= ao + box + coePx + Joe - px + eoe';x + Joe -'7X;

~~(O) = 1, ~o(O) = ~o(l) = ~~(1) = ~~(1) = ~0(1) = 0

~1(X)=~0(1-x).

On the other hand, our alternative technique involves calculating h"(O) and
h"(l) and subsequently defining

1/14(0) = 1/14(1) = I/I~(O) = 1/I~(1) = 0, I/I~(O) = ('J. (7.13)

1/1 s(.x) = as + bsx + csePx + dse - px + ese- a <;

I/Is(O) = I/Is(1) = 1/1;(0) = 1/1;(1) = 0, I/I~(O) = 13·

Finally, we would set

H(x) = h(x) + dl/l4(X) +:!JI/I s(x)

where

(7.14 )

dl/l;(0) + :!JI/I~(O) = fo - h"(O), dl/l~(1)+~I/I~(l)=n-h"(l). (7.15)

8. HIGHER ORDER TE~SIO~ I~TERPOLA~TS

In this section, we generalize the exponential spline and Hermite inter
polant previously described. The starting point for this discussion is the
characterization of these exponential interpolants as belonging to the null
space of E = D 4

- piD 2 between knots.
One possible extension would be to consider piecewise solutions of

(8.1 )
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However, this operator does not permit a factorization as L *L since 'Y. ¥ I)

produces an operator that is not selfadjoint. As such, it does not generate
piecewise-generalized splines. In fact, a direct computation establishes that
the most general fourth order homogeneous differential operator with real
constant coefficients (lead coefficient = 1) that permits such a decomposi
tion is precisely the exponential spline operator, E.

Hence, if we \vant a generalization using constant coefficients that
produces piecewise-generalized splines we must increase the order of tie
differential operator. Thus, consider the sixth order operator equation

(8.2 )

Let L = D3 + /1D 2 + I}D ~ L * = - D3 + JlD 2
- liD. Thus. L *L = - D6 -i

(/12 - 211) D.\ _1}2D 2
. We thus arrive at

[L*L] leX) = 0, i8.3)

where 'Y. = (' = ° (by selfadjointness of the differential operator), b = _,]2

f3 = 21;- p2. That is,

[D 6+ (211- /12) D4+ 1}2D 2] t(X) = 0 {S."- j

or, in factored form,

[D 2(D 2+ /1D + I}I)(D 2 - f1D + I'}/)] t(x) = O. (8.5)

The characteristic roots of this operator will then determine the basis
functions for the null space. The double root of zero admits 1 and x. The
other roots are

(86 )

If l'/=O, we admit x 2, x 3, e-/lX
• If /12-41]=0, we admit e-;u2, xe- Jul

,

e!-'x 2, xe/lx,2. Otherwise, we have four distinct i.'s and corresponding basis
functions. Note that for /1 2> 411 we obtain hyperbolic functions while if
/12 < 41( we obtain trigonometric functions.

The above considerations lead us to the following definition of tension
interpolants of order 2m (degree 2m - 1). Let

(8,7)

possess the factorization T = (- 1yn L *L, where

L=D"'+{3",_,D"'-l+ ... +f32D2+f31D~ (8.8)

L*=(-1)mDm+(-1)m-lf3m_lDm-!+ ... +f3:D2-fJ!D. (8,9)
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We then say that t(x) is a tension interpolant if it is a piecewise solution
of

In this case

[T] t(x)= [(_l)m L*L] t(x)=O. (8.10)

D2[Dm-l+fJm_IDm-2+ ... +fJ2 D +fJJ]'

[Dm- 1 _ fJm_ 1 Dm- 2 + ... + (- I )m - 2 fJ 2 D + (- Ir' - 1 fJ 1I] t(x) = O.

(8.11 )

Again, the double root of zero admits I and x as basis functions for
N( L *L). The other basis functions are determined by the remaining roots
of the characteristic equation.

This generalization allows us to pursue one of two routes. First, we
could require a greater degree of smoothness at the knots. In this context,
the sixth order operator discussed above would produce a quintic tension
spline which is C 4 [a, b] (C 2m - 2 [a, b] in the general case). Secondly, we
could require higher order interpolation at the knots. Our previous exam
ple then amounts to a quintic Hermite interpolant under tension matching
function values together with first and second derivatives which is C 2 [a, b]
(C m -I [a, b] in the general case).

9. COKCLUSIOK

In the preceeding paragraphs, we have accomplished two objectives.
First, building on the previous work of Pruess, we have further extended
the theory of exponential splines. Most notable in this regard are the treat
ments of convergence of third derivatives, cardinal and B-spline bases, and
extremal properties. Second, the exponential spline has been generalized in
two directions. Higher order tension splines have been defined thus provid
ing the generalization of quintic splines, etc. Higher degree interpolation
has been treated thus providing the generalization of Hermite polynomial
interpolation.

As previously noted, these investigations were motivated by Pruess'
results on co-convex and co-monotone interpolation by exponential
splines. In addition to the theoretical results presented here, this has also
led to the construction of practical tension parameter selection algorithms
as well as an in-depth study of computational issues in the use of exponen
tial splines [8]. Furthermore, the application of exponential splines to a
broad spectrum of problems in computational fluid dynamics has been
pursued [7].
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